90 research outputs found

    Exploiting CryoSat-2 altimetry for surface water monitoring and modeling

    Get PDF

    The Three Gorges Dam Affects Regional Precipitation

    Get PDF
    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies

    Potential application of biogenic silica as an indicator of paleo-primary productivity in East Antarctic lakes

    Get PDF
    We collected two lake sediment cores (MC and DM) from the East Antarctic region for analysis of biogenic silica and other biogeochemical parameters (e.g., organic matter, C, N, S, H). Based on synthetically comparative research, we focused on the potential application of biogenic silica (BSi) for the reconstruction of paleo-primary productivity in the East Antarctic lakes. Analytical results showed that a large number of diatoms were well preserved in the freshwater lake sediments, and that concentrations of biogenic silica displayed notable fluctuations over different water depths. The content of biogenic silica had a consistent profile over water depth, and this pattern changed with organic matter, reflecting their potential as eco-environmental proxies. Low levels of BSi and organic matter indicated reduction of lake algal production, and corresponded to decreased lake primary productivity. Due to the fragile ecosystem state and limited contribution of terrestrial organic matter in the East Antarctic lakes, the contents of biogenic silica in the lacustrine sediments can sensitively indicate the evolutionary history of paleo primary productivity. Overall, BSi is an ideal proxy for the reconstruction of past eco-environmental change recorded in the lacustrine sediments on East Antarctica

    The changes of pigment contents and their environmental implications in the lake sediments of Ny-Ă…lesund, Svalbard, the Arctic

    Get PDF
    According to palaeoclimatic and modern instrumental data, numerous studies have indicated that the Arctic climate has undergone a significant warming during the past 100 years, and this may lead to significant impact on the fragile lake ecosystem. In this study, we collected a lake sediment core from the Ny-Ă…lesund of Svalbard and determined the concentrations of four pigments including chlorophyll derivatives, total carotenoids, oscillaxanthin and myxoxanthophyll in the sediments. Combined with other physical and chemical proxies such as calcium carbonate, total organic carbon, biogenic silicon etc.,we have reconstructed the historical changes of lacustrine primary productivity in Ny-Ă…lesund, especially for the past 100 years. The results showed that during the period of Little Ice Age(LIA), the climate was unfavorable for the growth of the lake algae, and thus the lacustrine productivity declined. This result was supported by the relatively low contents of pigment and biogenic silica in the sediments. In contrast, the contents of total organic carbon(TOC) and sediment pigments increased significantly in the upper 5cm (~1890AD), reflecting the rapid growth of the lake algae, thus the great increase of lacustrine primary productivity, corresponding to the warming climate after LIA. However, the biogenic silica in the upper sediments still had a relatively low level, and this might be related to the growth competition with other algae species. Over the past 100 years, the ratio of Osc/Myx in the sediments decreased continuously, indicative of durative increase of myxoxanthophyll in blue-green algal pigments, and this might imply that the human activity had enhanced the nutrition level of the lake in the Arctic region

    High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021

    Get PDF
    Reservoirs and dams are essential infrastructure in water management; thus, information of their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) is crucial for understanding their properties and interactions in hydrological and biogeochemical cycles. However, knowledge of these reservoir characteristics is scarce or inconsistent at the national scale. Here, we introduce comprehensive reservoir datasets of 338 reservoirs in China, with a total of 470.6 km3 storage capacity (50 % Chinese reservoir storage capacity). Given the scarcity of publicly available gauged observations and operational applications of satellites for hydrological cycles, we utilize multiple satellite altimetry missions (SARAL/AltiKa, Sentinel-3A and Sentinel-3B, CroySat-2, Jason-3, and ICESat-2) and imagery data from Landsat and Sentinel-2 to produce a comprehensive reservoir dataset on the WSE, SWA, and RWSC during 2010–2021. Validation against gauged measurements of 93 reservoirs demonstrates the relatively high accuracy and reliability of our remotely sensed datasets. (1) Across gauge comparisons of RWSC, the median statistics of the Pearson correlation coefficient (CC), normalized root mean square error (NRMSE), and root mean square error (RMSE) are 0.89, 11 %, and 0.021 km3, with a total of 91 % validated reservoirs (83 of 91) having good RMSE from 0.002 to 0.31 km3 and NRMSE values smaller than 20 %. (2) Comparisons of WSE retracked by six satellite altimeters and gauges show good agreement. Specifically, the percentages of reservoirs having good and moderate RMSE values smaller than 1.0 m for CryoSat-2 (validated in 30 reservoirs), SARAL/AltiKa (9), Sentinel-3A (34), Sentinel-3B (25), Jason-3 (11), and ICESat-2 (26) are 77 %, 75 %, 79 %, 87 %, 81 %, and 82 %, respectively. By taking advantages of six satellite altimeters, we are able to densify WSE observations across spatiotemporal scales. Statistically, around 96 % of validated reservoirs (71 of 74) have RMSE values below 1.0 m, while 57 % of reservoirs (42 of 74) have good data quality with RMSE values below 0.6 m. Overall, our study fills such a data gap with regard to comprehensive reservoir information in China and provides strong support for many aspects such as hydrological processes, water resources, and other studies. The dataset is publicly available on Zenodo at https://doi.org/10.5281/zenodo.7251283 (Shen et al., 2021).</p
    • …
    corecore